113 research outputs found

    HyperNTF: A Hypergraph Regularized Nonnegative Tensor Factorization for Dimensionality Reduction

    Full text link
    Most methods for dimensionality reduction are based on either tensor representation or local geometry learning. However, the tensor-based methods severely rely on the assumption of global and multilinear structures in high-dimensional data; and the manifold learning methods suffer from the out-of-sample problem. In this paper, bridging the tensor decomposition and manifold learning, we propose a novel method, called Hypergraph Regularized Nonnegative Tensor Factorization (HyperNTF). HyperNTF can preserve nonnegativity in tensor factorization, and uncover the higher-order relationship among the nearest neighborhoods. Clustering analysis with HyperNTF has low computation and storage costs. The experiments on four synthetic data show a desirable property of hypergraph in uncovering the high-order correlation to unfold the curved manifolds. Moreover, the numerical experiments on six real datasets suggest that HyperNTF robustly outperforms state-of-the-art algorithms in clustering analysis.Comment: 12 pages, 6 figures, 9 table

    A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on Convolutional Neural Network

    Full text link
    The key to electroencephalography (EEG)-based brain-computer interface (BCI) lies in neural decoding, and its accuracy can be improved by using hybrid BCI paradigms, that is, fusing multiple paradigms. However, hybrid BCIs usually require separate processing processes for EEG signals in each paradigm, which greatly reduces the efficiency of EEG feature extraction and the generalizability of the model. Here, we propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface. It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms. TSCNN automatically learns to extract EEG features in the two paradigms in the training process, and improves the decoding accuracy by 25.4% compared with the MI mode, and 2.6% compared with SSVEP mode in the test data. Moreover, the versatility of TSCNN is verified as it provides considerable performance in both single-mode (70.2% for MI, 93.0% for SSVEP) and hybrid-mode scenarios (95.6% for MI-SSVEP hybrid). Our work will facilitate the real-world applications of EEG-based BCI systems

    Fitts' Law for speed-accuracy trade-off is a diversity sweet spot in sensorimotor control

    Get PDF
    Human sensorimotor control exhibits remarkable speed and accuracy, as celebrated in Fitts' law for reaching. Much less studied is how this is possible despite being implemented by neurons and muscle components with severe speed-accuracy tradeoffs (SATs). Here we develop a theory that connects the SATs at the system and hardware levels, and use it to explain Fitts' law for reaching and related laws. These results show that diversity between hardware components can be exploited to achieve both fast and accurate control performance using slow or inaccurate hardware. Such “diversity sweet spots'' (DSSs) are ubiquitous in biology and technology, and explain why large heterogeneities exist in biological and technical components and how both engineers and natural selection routinely evolve fast and accurate systems from imperfect hardware
    • …
    corecore